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Abstract 

Background:  Breast cancer (BC) is the most common malignancy in women, in whom it reaches 20% of the total 
neoplasia incidence. Most BCs are considered sporadic and a number of factors, including familiarity, age, hormonal 
cycles and diet, have been reported to be BC risk factors. Also the gut microbiota plays a role in breast cancer devel-
opment. In fact, its imbalance has been associated to various human diseases including cancer although a conse-
quential cause-effect phenomenon has never been proven.

Methods:  The aim of this work was to characterize the breast tissue microbiome in 34 women affected by BC using 
an NGS-based method, and analyzing the tumoral and the adjacent non-tumoral tissue of each patient.

Results:  The healthy and tumor tissues differed in bacterial composition and richness: the number of Amplicon 
Sequence Variants (ASVs) was higher in healthy tissues than in tumor tissues (p = 0.001). Moreover, our analyses, able 
to investigate from phylum down to species taxa for each sample, revealed major differences in the two richest phyla, 
namely, Proteobacteria and Actinobacteria. Notably, the levels of Actinobacteria and Proteobacteria were, respec-
tively, higher and lower in healthy with respect to tumor tissues.

Conclusions:  Our study provides information about the breast tissue microbial composition, as compared with 
very closely adjacent healthy tissue (paired samples within the same woman); the differences found are such to have 
possible diagnostic and therapeutic implications; further studies are necessary to clarify if the differences found in the 
breast tissue microbiome are simply an association or a concausative pathogenetic effect in BC. A comparison of dif-
ferent results on similar studies seems not to assess a universal microbiome signature, but single ones depending on 
the environmental cohorts’ locations.
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Background
Breast cancer (BC) is the most common form of cancer 
among women and, after ovarian cancer, is the second 
cause of death due to a neoplastic disease worldwide [1, 
2]. Familial forms of BC represent up to 20% of all BCs: 
among these more than 25% are due to predisposing 
mutations in the BRCA1/2 genes [3–9] while another 
percentage concerns mutations in high, moderate and 
low susceptibility genes [10]. Despite this genetic com-
ponent, the etiology of up to 80-85% of tumors remains 
unknown and thus they are considered sporadic. In this 
context, environmental and lifestyle factors might also 
modify cancer risk in both familial and sporadic BCs. 
Nevertheless, most of the factors contributing to BC are 
still not completely understood thereby limiting BC pre-
vention and treatment measures [11, 12].

The human microbiome plays an important role in pro-
moting health and preventing disease, which suggests 
that microbial dysbiosis could contribute to increasing 
the risk of cancer [13–19]. In this regard, in recent years 
attention has focused on the relationship between the 
human microbiome and carcinogenesis to assess its role 
in BC onset and/or development [20–24]. Therefore, in 
this scenario, we analyzed (in paired samples from the 
same subject) the microbiome of tumor breast tissue and 
the adjacent normal one of women affected by BC in the 
attempt to get a closer view which may shed light on the 
potential involvement of microbial dysbiosis in breast 
cancer. To this aim, we used next-generation-sequencing 
(NGS)-based methodology to analyze the 16 s ribosomal 
RNA of the microbiome tissue populations.

Methods
Patients’ samples and ethics
Biological samples and clinical data were obtained from 
a total of 34 women attending the Breast Unit of the 
“Istituto Nazionale dei Tumori - Fondazione G. Pas-
cale” of Naples starting in 2014 lasting 5 years (Table 1). 
All patients gave their written informed consent to the 
study that was carried out according to the tenets of the 
Helsinki Declaration and approved by the Istituto Nazi-
onale Tumori - Fondazione G. Pascale Ethics Commit-
tee (protocol number 3 of 03/25/2009). All patients were 
previously screened for BRCA1/2 mutations using the 
protocol and the selection criteria reported by D’Argenio 
et al. 2015 [25].

Tumor tissues and healthy tissues, singly paired from 
the same woman, and surgically removed at the same 

time (within the same sequencing run, see below), were 
analyzed for a total of 68 samples, from which total DNA 
was isolated. Only fresh frozen tissues were used. The tis-
sues were frozen immediately after removal directly in 
the surgery room to avoid environmental contamination.

To precisely ensure the histology of tissues, all were 
analyzed in the pathology laboratory (see Table 1).

Genomic DNA extraction from breast tissue
DNA was extracted from tissues using the QIAamp 
DNeasy Blood & Tissue kits (Qiagen, Hilden, Germany), 
according to the manufacturer’s instructions. DNA was 
quantified using the NanoDrop 2000c Spectrophotom-
eter (Thermo Fisher Scientific, Waltham, MA, USA) and 
the Qubit dsDNA BR and HS assay kit (Life Technolo-
gies, CA, USA).

Preparation of the 16 S Metagenomic Sequencing Library
Amplification of the V4-V6 regions of the 16  S rRNA 
bacterial genes was assessed in two PCR steps: a tem-
plate of 5 ng/µl of DNA for each sample was used for the 
first PCR, which was performed using the V4-V6 region 
specific primers with overhang adapters attached. The 
primer sequences used in this study are listed in Table 2; 
the primers were designed and synthetized in our core 
facility.

Subsequently, 1  µl of the PCR product was analyzed 
on a Bioanalyzer DNA 1000 chip (Agilent, Santa Clara, 
CA, USA) to verify its size (~550  bp). Next, Agencourt 
AMPure XP beads (Beckman Coulter, Brea, CA, USA) 
were used to purify the 16 S V4-V6 amplicons away from 
free primers and primer dimer species. Purification prod-
ucts underwent further quality and quantity controls by 
Bioanalyzer DNA 1000 analysis (Agilent, Santa Clara, 
CA, USA). The second PCR, performed as per the Nex-
tera XT protocol (Illumina, San Diego, CA), allowed the 
addition of the Illumina sequencing adapters and the 
dual-index primers, which barcoded each sample. The 
V4-V6 amplified regions of each patient were purified 
through Agencourt AMPure XP Beads (Beckman Coul-
ter, Brea, CA, USA), quantified using the Qubit HS assay 
kit (Life Technologies, CA, USA) and quality-assessed 
using a High Sensitivity Chip on the 2100 Bioanalyzer 
Instruments (Agilent, Santa Clara, CA, USA). However, 
up to 68 libraries were pooled together for sequencing. 
Therefore, 8 pM of denatured libraries were combined to 
25% of 8 pM PhiX control and loaded into the MiSeq v3 
reagent cartridge. Sequencing reactions were per-formed 
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through the Illumina MiSeq System (PE 300 × 2), by 
obtaining an average read length of about 300  bp. The 
raw sequencing data are available in the SRA repository 
under the BioProject PRJNA759366.

Bioinformatic Analysis and Statistics
The Illumina MiSeq paired-end (PE) reads were denoised 
using a procedure relying on the inference of the Ampli-
con Sequence Variants (ASVs) (i.e. an estimation of the 
actual amplicons). The PE reads were treated with cut 
adapt to remove Illumina adaptors [26]. The trimmed 
reads were merged using PEAR [27]. The resulting 

Table 1  Anamnestic and clinical features of patients selected for this study

LABC is locally advanced breast cancer (n = 7 patients); TNBC is triple negative breast cancer; BRCA mutated patients (n = 3); nr: not reported

ID Under/Over
40 at the onset

Disease
Status

BC
Familiarity

BRCA1/2
Mutational 
status *

Tissue
Histology

Menarche 
Age

Pregnancies Other
Features

P1 OVER breast cancer no Wt nr nr nr nr

P2 UNDER breast cancer yes Wt luminal A 12 1 oral contraceptives

P3 OVER LABC yes Wt Her2 related 13 0 oral contraceptives

P4 OVER LABC no Wt TNBC 11 3 smoke

P5 UNDER breast cancer yes Wt luminal A 11 2 nr

P6 OVER breast cancer yes Wt luminal A 11 1 smoke, obesity, ovarian stimulation

P7 OVER breast cancer yes Wt nr 11 3 smoke, oral contraceptives

P8 UNDER LABC yes Wt TNBC 14 3 smoke

P9 UNDER breast cancer Yes BRCA1 TNBC 12 3 nr

P10 UNDER breast cancer yes Wt luminal A 9 0 oral contraceptives

P11 UNDER breast cancer no Wt nr 11 2 oral contraceptives

P12 UNDER breast cancer yes Wt luminal A 9 1 nr

P13 OVER breast cancer yes Wt nr 11 1 ovarian stimulation

P14 OVER LABC yes Wt nr 14 3 nr

P15 UNDER breast cancer Yes BRCA2 luminal A 16 1 oral contraceptives, smoke

P16 UNDER breast cancer yes Wt luminal A 10 3 nr

P17 UNDER breast cancer no Wt luminal A 12 2 oral contraceptives, smoke

P18 UNDER breast cancer no Wt Her2 related 11 0 smoke

P19 OVER LABC yes Wt luminal A 14 nr nr

P20 UNDER breast cancer no Wt luminal B 12 1 oral contraceptives

P21 UNDER breast cancer yes Wt luminal B 13 0 oral contraceptives, smoke

P22 OVER LABC yes Wt nr 12 2 smoke

P23 UNDER breast cancer yes Wt nr 13 2 nr

P24 OVER breast cancer yes Wt nr 11 2 (1 abort.) nr

P25 UNDER breast cancer no Wt luminal B 16 1 oral contraceptives, smoke

P26 OVER LABC yes Wt luminal A 14 2 nr

P27 UNDER breast cancer Yes BRCA2 luminal B 13 2 oral contraceptives

P28 UNDER breast cancer yes Wt nr 13 0 nr

P29 UNDER breast cancer no Wt luminal B 13 nr nr

P30 UNDER breast cancer yes Wt Her2 related 12 1 oral contraceptives

P31 UNDER breast cancer yes Wt nr 12 2 oral contraceptives

P32 UNDER breast cancer no Wt nr 12 6 smoke

P33 UNDER breast cancer yes Wt luminal B 14 2 ovarian stimulation

P34 UNDER breast cancer no Wt luminal B 13 1 nr

Table 2  Primers used to amplify the V4-V6 regions encoding for 
the 16 S rRNA for sequencing library preparations

Illumina 16 S PCR primers with overhang adapters and sequences 
complementary to V4-V6 regions (in bold)

ID of the 16 S primer Sequence

Forward 16 S V4-V6 TCG​TCG​GCA​GCG​TCA​
GAT​GTG​TAT​AAG​AGA​
CAG​CAG​CAG​CCG​CGG​
TAA​TAC​

Reverse 16 S V4-V6 GTC​TCG​TGG​GCT​CGG​
AGA​TGT​GTA​TAA​GAG​
ACAG​TGA​CGA​CAG​
CCA​TGC​
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merged reads were denoised by applying the DADA2 
workflow [28]. This procedure included the chimera- 
(i.e. PCR artifacts) and PhiX- (i.e. the PhiX phage is used 
during Illumina library preparation to increase nucleo-
tide variability) removal [29–31]. ASV sequences were 
mapped against the human genome (release hg19) using 
bowtie2 to remove nonspecific amplification products 
(i.e. 16 S rRNA mitochondrial gene) [32].

The ASVs obtained were taxonomically annotated in 
BioMaS using the Ribosomal (RDP) database (release 
11.5) and the NCBI taxonomy as 16  S rRNA reference 
collection and taxonomy, respectively [33–36]. In par-
ticular, the query sequences were aligned to the reference 
collection using bowtie2, and the resulting alignments 
were filtered according to query coverage (≥ 70%) and 
identity percentage (≥ 90%). A phylogenetic tree was 
inferred using the QIIME2 align-to-tree-mafft-fasttree 
plugin: a multiple sequence alignment of ASV sequences 
was obtained by using MAFFT and the phylogenetic tree 
was inferred by applying the maximum-likelihood proce-
dure implemented in Fasttree 2 [37–39].

The taxonomic classification was performed using 
TANGO [40]. In particular, for ASV sequences obtain-
ing matches with an identity percentage equal or higher 
than 97% the classification at species level was accepted, 
otherwise ASVs were classified at higher taxonomic 
ranks [41]. The ASV table was normalized by using rar-
efaction for diversity analysis [42]. The Shannon and the 
Faith Phylogenetic indices [43, 44] were inferred as alpha 
diversity measure by applying the phyloseq R-package, 
and statistically relevant differences between groups were 
evaluated by applying the Wilcoxon test [45]. The princi-
pal coordinates analysis (PCoA) that describes the diver-
sity between the samples (i.e. Beta-diversity) based on 
the weighted and unweighted UNIFRAC metrics, were 
inferred by using the vegan R package and evaluated by 
PERMANOVA [46, 47].

The statistical comparison between the healthy and 
tumor samples was performed by using DESeq2 [48]. 
To measure differences between tissues in the differ-
ent conditions, the data were normalized by taking into 
account inter-sample variability. The p-values obtained 
were adjusted for multiple comparisons with the Benja-
min-Hochberg method. Finally, a supervised model for 
sample classification was built using the Random Forest 
(RF) Machine Learning (ML) methods and the R pack-
age caret [49]. In particular, the DESeq2 ASVs normal-
ized counts were scaled and centered. Then the dataset 
was randomly divided into the training set and the test 
data set that including 54 and 14 samples, respectively. 
The tuning of RF hyperparameter mtry was performed 
by repeating cross-validation (10 cross-validation with 10 
repeats) on the training dataset and the best mtry value 

was selected according to ROC metric. Lastly, the accu-
racy of the RF model was assessed on the test dataset.

Results
The comparison between the breast tissue microbiota in 
tumor and that in paired normal adjacent tissues from 
34 women affected by breast cancer enabled us to inves-
tigate the distribution of microbial communities of each 
sample. Each sample obtained more than 90% of reads 
thereby passing quality filtering with an average qual-
ity value of 30 (Q30) >80%. The analyzed data were pro-
duced by performing an Illumina MiSeq sequencing run, 
and we obtained a variable number of Paired End (PE) 
reads per sample (mean 130,820, sd 384,926.925, median 
69,920, min 13,417, max 3,215,914). About 96% of input 
sequences passed the trimming of adaptors and the PCR 
primer step.

The overall quality of reverse reads was lower than that 
of forward reads for all the sequenced samples and, in this 
specific case, did not pass the quality filter in dada2 [50]. 
To overcome this issue, we applied an approach based on 
PE reads merging before denoising [51, 52]. About 70% 
of input reads were successfully merged. The denoising 
step enabled us to infer the Amplicon Sequence Variants 
(ASV) sequences and their absolute counts. The ASV 
sequences were checked to remove chimeras and human 
contaminants. In order to achieve an adequate compro-
mise between the microbiome sampling and the number 
of retained samples, the ASV table was rarefied using 
an equal sequencing depth of 15,000 (Additional File 1: 
Figure S1), 27 and 16 tumoral and non-tumoral samples 
were retained, respectively.

The alpha diversity was measured using the Shannon 
Index and plotted as a box-plot (Fig. 1a). No statistically 
significant differences were observed between the tested 
conditions according to the Shannon index (p-value = 
0.1649). Conversely, the distribution of the Faith index 
differed significantly (p-value ≤ 0.05) between healthy 
and tumor tissue samples (Fig. 1b).

Although no clear clustering was observed in the 
PCoA plot based on weighted UniFrac analysis (Fig. 1c) 
between healthy (H) and tumor (T) tissue samples, the 
PERMANOVA suggested that about 7% of the observed 
variability is explained by the conditions (p-value = 
0.007). Conversely, neither the PCoA plots nor the PER-
MANOVA based on unweighted UniFrac (data not 
reported) resulted in any significant difference between 
the two conditions (p-value = 0.103).

Taxonomic Distribution
All the ASVs were taxonomically annotated at least 
at kingdom level. Generally, 13 phyla, 25 classes, 59 
orders, 105 families, 199 genera and 514 species were 



Page 5 of 11Esposito et al. BMC Cancer           (2022) 22:30 	

identified across all samples. The distribution of phyla 
is shown in Fig.  2. The most predominant phyla are 
Actinobacteria and Proteobacteria (about 31% and 
55.4% on average, respectively). Gammaproteobacteria 
(40.22%), Actinobacteria (25.09%), Bacilli (7.83%) and 
Alphaproteobacteria (5.57%) are the most abundant 
classes among all tumor and normal samples.

The most prevalent families are Propionibacteriaceae 
(23.57%), Moraxellaceae (17.83%) and Pseudomona-
daceae (15.19%). The genera Propionibacterium 
(22.59%), Acinetobacter (15.43%) and Pseudomonas 
(15.10%) are the most abundant. The results of statisti-
cal comparisons are reported in Table 3. The box-plot 
of each statistically different taxon between healthy 
and tumor samples, are shown in Fig.  3 (A-F) and 
Fig. 4 (A-C), and in Additional File 1: Figure S2. Over-
all, in non-tumoral paired samples a higher abundance 

of taxa belonging the Actinobacteria phylum was 
found. In particular, the order Propionibacteriales, the 
family Propionibacteriaceae, the genus Propionibac-
terium and species Propionibacterium sp. enrichment 
culture clone MRHull-FeSM-11R and Propionibacte-
rium acnes are more abundant in non-tumoral tissues 
(Fig.  3  A-F and Fig.  4  C). Conversely, Firmicutes and 
Alpha-proteobacteria are significantly overrepresented 
in tumoral tissues.

In order to identify the ASVs able to discern among 
tumoral and non-tumoral tissues by using a robust and 
reliable method, a supervised classification machine 
learning model was built using Random Forest (RF). 
To avoid overfitting and to properly train the model, 
the dataset was divided into a training and a test data-
set, accounting for 54 and 14 samples, respectively. 

Fig. 1   A. The distribution of the inferred Shannon Index for tumoral and non-tumoral samples were shown as boxplot. B. The distribution of 
the inferred Faith Phylogenetic Index for tumoral and non-tumoral samples were shown as boxplot. C. PCoA plot based on weighted UniFrac 
measurements. H: healthy tissue; T: tumor tissue
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Fig. 2  Phyla distribution in healthy (H) and tumor (T) samples are show per each enrolled subject as stacked bar-plot. All the rare taxa are collapsed 
in “other” (relative abundance < 1% in all samples)

Table 3  List of taxa that differ significantly between healthy and tumor samples

The analysis was performed by comparing healthy and tumor samples, consequently if the log2 fold change is positive, the taxon counts are higher in healthy than in 
tumor samples. Significance level refers to adjusted p-values: * ≤ 0.05, ** ≤ 0.01, *** ≤ 0.001, **** ≤ 0.0001

Taxa Significance Log2 fold change Adjusted p-value

Phylum
   Actinobacteria **** 2.28 1.36e-11

   Firmicutes * -0.89 0.047

Class
   Actinobacteria (Class) **** 2.51 3.23e-12

   Alphaproteobacteria * -1.51 0.015

Order
   Propionibacteriales **** 2.53 2.06e-11

   Aeromonadales **** 26.23 1.99e-19

   Selenomonadales **** 25.6 2.17e-18

Family
   Propionibacteriaceae **** 2.54 7.24e-08

   Aeromonadaceae **** 25.18 4.60e-21

Genus
   Propionibacterium **** 2.36 3.39e-06

   Aeromonas **** 26.32 1.00e-19

Species
   Variovorax sp. WO3 **** 25.13 1.28e-18

   Moraxella sp. S2 **** -25.4 1.42e-17

   Pseudomonas sp. PS9 (2007) **** 25.14 4.39e-21

   Propionibacterium sp.
Enrichment culture clone MRHull-FeSM-11E

**** 27.3 2.28e-35

   Pseudomonas sp. IMER-A2-21 **** 26.39 9.32e-22

   Pseudomonas brenneri **** -25.87 4.13e-18

   Neisseria elongata **** 25.00 4.22e-17

   Propionibacterium acnes *** 1.91 0.006
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Fig. 3    (panels A-F). Normalized read counts distribution of statistically different taxa between healthy and tumor samples were shown as box-plot. 
In detail, Actinobacteria at phylum level, p-value=1,36E-11; Actinobacteria at class level, p-value=3,23E-12; Propionibacterium at genus level, 
p-value=3,39E-06; Propionibacteriaceae at family level, p-value=7,24E-08; Propionibacteriales at order level, p-value=2,06E-11; Propionibacterium_
sp._enrichment_culture_clone_MRHull-FeSM-11, at species level, p-value=2,28E-35. (Other box plots are shown in Additional File 1, Figure S1)

Fig. 4  (Panels A-C). Normalized read counts distribution of statistically different taxa between healthy and tumor samples were shown as box-plot. 
Firmicutes at phylum level, p-value=0,047230491; Alphaproteobacteria at class level, p-value=0.014872974; Propionibacterium_acnes at species 
level, p-value=0,0005835



Page 8 of 11Esposito et al. BMC Cancer           (2022) 22:30 

The overall accuracy of the test dataset was about 89%, 
with two misclassifications for healthy samples. The 
ASVs that most contribute to the model accuracy were 
selected and used to plot a heatmap (Fig. 5).

As shown in Fig.  5, two main clusters may be identi-
fied, the first one is constituted mainly by healthy tissues 
and the second one by tumor tissues. The first ASV was 
assigned to Propionibacterium acnes and was principally 
observed in healthy tissues. This result agrees with those 
obtained by comparing taxa abundances in DESeq2.

Regarding BRCA mutational status, there were only 
three BRCA-positive patients in our population and in 
particular one carrying a mutation in the BRCA1 gene 
and two in BRCA2 gene. Consequently, the data were 
not enough to carry a reliable statistical analysis. Simi-
larly, the same issue was observed for other confound-
ing factors, i.e. smoking status and contraception usage.

Discussion
Studies of the entire microbial communities and their 
relationships with the host have been conducted to eval-
uate how their imbalance could be involved in health 
maintaining and diseases [20, 54–61]. In particular, sev-
eral studies have linked the microbiome to the initiation 
and progression of different types of cancer, includ-
ing breast cancer [58, 59]. Moreover, the cooperation of 
microbial communities’ imbalance with diet, obesity, 
estrogens and immune modulation has been considered 
an important promoter of breast cancer [12, 62]. Notably, 
the majority of authors [16–19, 24, 36, 37, 61–64] note 
that their findings are hypothesis-generators and support 
further investigations to identify a microbial risk signa-
ture for breast cancer and potential microbial-based pre-
vention and/or therapies.

In this scenario, we studied the resident breast microbi-
ota in tumor and paired normal breast tissue from 34 BC 
patients. The aim of our study was to evaluate the micro-
bial composition of breast tumor tissues and healthy 
tissues in the attempt to shed light on the link between 

dysbiosis and breast cancer which, in turn, may indicate 
that a change in bacterial species could contribute to 
the modulation of cancer development. A comparison 
between paired healthy and tumor tissues revealed dif-
ferences of bacterial community and composition. The 
number of ASVs detected between paired normal and 
tumor tissue showed significant differences in richness 
between the sampled communities. Proteobacteria and 
Actinobacteria showed differences between two groups: 
healthy tissues showed an increase of Actinobacteria and 
a decrease of Proteobacteria; the opposite appeared in 
tumor tissues. Conversely, in healthy tissues, appear to be 
more prevalent Propionibacterium and Pseudomonas.

In particular, we observed an overall decrease of 
microbial alpha diversity in tumoral tissues compared 
to healthy ones. We also found a significant depletion of 
Propionibacterium acnes in tumor tissues versus normal 
breast tissues, which is a novel finding. Propionibacte-
rium acnes (currently denominated Cutibacterium acnes) 
is a component of the human microbiome found in sev-
eral body districts. Its over-representation in normal tis-
sue was observed by comparing abundances (DESeq2) 
and also by machine learning (Random Forest), which 
indicates that these results are robust. This gram-positive 
species is considered an opportunist pathogen because 
potentially pathogenic genes were found in the genomes 
available (5 phylotypes). However, the role of Propioni-
bacterium remains to be established. For example, Talib 
et al. 2015 [65] described a potential antitumoral action 
of Propionibacterium acnes in breast cancer, and Portillo 
et al. 2013 [66] suggested that it plays a role in implant-
associated infections.

Our study supports the presence of microbial DNA in 
breast tissues that could probably influence the local tis-
sue microenvironment. In the attempt to minimize any 
external variations (including sample preparation and 
sequencing) between healthy and tumor tissues, we com-
pared healthy tissues to the paired tumor breast tissues 
taken from each woman at the same time and in the same 

Fig. 5  Heatmap showing top 12 important ASVs that contribute most to the RF Classification Model. The species listed represent the deepest 
taxonomic classification rank of each ASV. Samples are shown in column and clustered by using the Ward’s method for hierarchical clustering 
relying on Euclidean distances [53]
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conditions. All 68 samples were amplified, purified and 
sequenced together in a single sequencing run in order to 
minimize any analytical variation. Although, our results 
are at variance from those reported by others [16–19, 
24, 61, 62], it is important to highlight that differences 
in both experimental procedures (i.e., primer design and 
the use of bioinformatic pipelines to filter and to analyze 
data) and different cohort enrolled can affect results and, 
therefore, their comparison. Survey results about the 
breast cancer tissue microbiome, are reported for a more 
comprehensive comparison (Additional File 1: Table S1) 
and it is important to note how several factors, such as 
ethnicity, dietary habits, geographical origin, lactation 
status, pharmaco-therapeutic before surgery, the method 
of sample collection [66, 67] can affect the composition 
of microbial tissues [16]. For instance, Fusobacterium 
nucleatum has been described as a key player in several 
pathological conditions, and particularly in colon rectal 
cancer. However, earlier work was principally based on a 
comparison between healthy and unhealthy samples [16–
19, 24], not including paired tissues analysis.

Accordingly, another key difference is that the primer 
pairs we used differed from those used in other studies. 
In their review of the association between the gut/breast 
microbiota and breast cancer, Laborda-Illanes et al. 2020 
[20] highlighted the differences among studies in terms 
of data results. We counted 6 different combinations of 
the 16  S hypervariable region in 10 papers (i.e., V4=3, 
V6=2, V3-V4=1, V3-V5=2, V1-V2=1 and V3=1). Con-
sequently, it may be misleading to compare surveys con-
ducted using different marker regions, also considering 
the different efficiency in target amplification and in the 
resolution of taxonomic assignment.

Therefore, it is difficult and also controversial to define 
a precise signature of the breast cancer microbiome. 
Thus, our effort was not to define a universal bacterial 
signature in breast cancer tissues, but to reinforce the 
concept that it is an altered balance that characterizes 
tumor tissues versus healthy tissues in the same woman, 
also at the very close proximity regions, which per se 
increases significance of the microbial presence at the 
level of breast tissue cell transformation. Indeed, we also 
found that microbial alpha diversity was overall lower in 
tumor tissues than in healthy tissues.

Larger studies, conducted in diverse geographic 
regions, are needed to define - if existing - a precise 
bacterial signature for each type of tissue neoplasia and 
thus to determine the role played by the microbiome in 
breast cancer onset and development. Furthermore, it is 
difficult to use general approaches in different cohorts 
particularly those living in different geographic regions. 
Rather, it may be more effective to study patients, cohort-
by-cohort or groups of subjects living in the same region 

and under similar environmental conditions. It is also 
necessary to understand, using in vitro systems as human 
tumoroids and mouse models, how different pre-surgery 
antibiotic regimens can induce disturbances in the breast 
microbiota and how these disturbances affect BC pro-
gression. Indeed, the lack of this information may repre-
sent a limitation.

It is now necessary to understand the effect that the 
metabolites produced from resident bacteria have on 
the development and progression of the breast. How-
ever, it is necessary not only to study the association 
among microbiota, tumor development and progression 
and/or anti-tumor immune responses using metagen-
omic sequencing technologies, but also to demonstrate 
microbiota functionality using transcriptional and/or 
metabolic profiling [68, 69], thereby paving the way to the 
application of further precision medicine in BC patients.

Conclusions
This study reveals a highly significant difference in the 
abundance of the various taxa of the microbiome in 
breast tumor tissues versus their healthy tumor-adjacent 
counterparts in women after surgery. These alterations 
reflect qualitative and quantitative differences of taxa, 
thus indicating their relevance in the comprehension of 
microbiome content and their role in tumor tissues.

Finally, assessing the different microbial composition in 
relation to BC onset and progression could be a goal to 
achieve in future studies on more numerous cohorts of 
patients.
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